2 Python
Cheat Sheet

A loop is used to repeatedly execute a block of code.

Python has two types of loops: a ‘for’ loop and a ‘while’ loop.

Let's take a look at both of them:

A set is an unordered collection of unique elements. You
can create a set using the set() function or curly braces.

It can also hold a variety of data types, as long as they are
unique. Here are some examples of set operations:

To create a new file or overwrite an existing one, open the
file with mode 'w":

file_obj=open('file_path’, 'w')

For loops: Write data to the file using the write() method:

s Create a set:

for variable in iterable: file_obj.write('This is a line of text.)

# Code to execute for each element in the iterable my_set =11, 2, 3}

Don't forget to close the file:
. » Add an element:
While loops: file_obj.close()

my_set.add(4)

</> Python Syntax Basics

while condition: Again, consider using the with statement for a more

concise and safer way to handle files:

Comments

Comments are an important part of your code, as they
allow you to explain your thought process and make your
code more readable. In Python, you can create single-line
comments using the hash symbol (#).

# Code to execute while the condition is true = Remove an element:

my_set.remove(1)

Dictionaries

Inside these loops, you can use conditional and control with open(‘file_path’, 'w') as file_obj:

statements to control your program's flow.

Functions in Python are blocks of code that perform specific
tasks. You can define a function using the ‘def’ keyword,
followed by the function name and parentheses containing
any input parameters.

file_obj.write('This is a line of text.)

# This is a single-line comment.

Appending To Files

To add content to an existing file without overwriting it,
open the file with mode 'a’.

A dictionary is an unordered collection of key-value pairs,
where the keys are unique. You can create a dictionary
using curly braces and separating the keys and values with
colons. Here are some examples of dictionary operations:

For multi-line comments, you can use triple quotes (either
single or double).

""" This is a multi-line comment.

Variables in Python are used to store data. You can assign
values to variables using the equals sign (=).

file_obj = open('file_path’,'a’)
» Create a dictionary:

: . Use the write() method to append data to the file:
def function_name(parameters): my_dict ={'key1": 'valuel’, 'key2': 'value2'}

# Code to execute file_obj.write('This is an extra line of text.)

s Access elements:

return result And, as always, close the file when you're done:

my_dict['keyl'] #Output:'valuel’
To call a function, use the function name followed by file_obj.close()
parentheses containing the necessary arguments. = Add a key-value pair:

X=5 For a more efficient and cleaner approach, use the

my_dict['key3'] = 'value3' with statement:

name ="John" function_name(arguments)

Now that we've gone over the Python basics, let's move on = Remove a key-value pair: with open('file_path', 'a’) as file_obj:

Variable names should be descriptive and follow the ]
to some more advanced topics.

naming convention of using lowercase letters and
underscores for spaces.

del my_dict['key1'] file_obj.write('This is an extra line of text.)

Remember to practice and explore these data structures in

user_age =25 your Python projects to become more proficient in their usage.
| Data Structures
favorite_color="blue"

By following these steps and examples, you can
efficiently navigate file operations in your Python
applications. Remember to always close your files after
working with them to avoid potential issues and

m File |Io resource leaks.
Error Handling

A list in Python is a mutable, ordered sequence of elements.
To create a list, use square brackets and separate the

ReadingFiles

The Python language comes with several data types built-
in by default. Some of the more common ones include:

= TEXT TYPES: str

=« BOOLEAN TYPE: bool

« NUMERIC TYPES: int, float, complex

» SEQUENCE TYPES: list, tuple, range

« NONE TYPE: Nonetype

To find out the data type of any Python object, you can use
the type() function. For example:

name = 'jane'
print(type(name))
#Output: 'str'

Conditional Statements

Conditional statements in Python allow you to execute
different codes based on certain conditions. The common
conditional statements are ‘if’, 'elif, and ‘else’.

if condition:
# Code to execute if the condition is true
elif another_condition:

# Code to execute if the another_condition is true
else:

# Code to execute if none of the conditions are true

@ ENTERPRISE DNA

elements with commmas.

Python lists can hold a variety of data types like strings,
integers, booleans, etc. Here are some examples of
operations you can perform with Python lists:

= Create alist:
my_list=1[1, 2, 3]

= Access elements:
my_list[0]

« Add an element:

my_list.append(4)

A tuple is similar to a list, but it is immutable, which means
you cannot change its elements once created. You can
create a tuple by using parentheses and separating the
elements with commas.

Here are some examples of tuple operations:

= Create a tuple:
my_tuple=(1, 2, 3)
s Access elements:

my_tuple[0] #Output: 1

To read a file, you first need to open it using the built-in
open() function, with the mode parameter set to 'r’ for
reading:

file_obj = open('file_path', 'r')

Now that your file is open, you can use different methods to

read its content:

« read(): Reads the entire content of the file.
« readline(): Reads a single line from the file.
« readlines(): Returns a list of all lines in the file.

It's important to remember to close the file once you've
finished working with it:

file_obj.close()

Alternatively, you can use the with statement,
which automatically closes the file after the block
of code completes:

with open('file_path', 'r') as file_obj:

content = file_obj.read()

enterprisedna.co

Try And Except

To handle exceptions in your code, you can use the try
and except blocks. The try block contains the code that
might raise an error, whereas the except block helps you
handle that exception, ensuring your program continues
running smoothly.

Here's an example:
try:
quotient=5/0
except ZeroDivisionError as e:
print("Oops! You're trying to divide by zero.")
In this case, the code inside the try block will raise a
ZeroDivisionError exception. Since we have an except

block to handle this specific exception, it will catch the
error and print the message to alert you about the issue.

= Page 1of 2

Prepared By ENTERPRISE DNA EXPERTS


http://enterprisedna.co/
https://enterprisedna.co/experts

The finally block is used when you want to ensure that a
specific block of code is executed, no matter the outcome
of the try and except blocks. This is especially useful for
releasing resources or closing files or connections, even if
an exception occurs, ensuring a clean exit.

Here's an example:

try:
# Your code here
except ZeroDivisionError as e:
# Exception handling
finally:
print("This will run no matter the outcome of the

try and except blocks.")

Raising Exceptions

You can also raise custom exceptions in your code to
trigger error handling when specific conditions are met. To
do this, you can use the raise statement followed by the
exception you want to raise (either built-in or custom
exception).

For instance:

def validate_age(age):
if age <O0:
raise ValueError("Age cannot be a negative value.")
try:
validate_age(-3)
except ValueError as ve:

print(ve)

In this example, we've defined a custom function to
validate an age value. If the provided age is less than zero,
we raise a ValueError with a custom message. When
calling this function, you should wrap it in a try-except
block to handle the exception properly.

@ ENTERPRISE DNA

</> Modules And Packages Object-Oriented Programming

Importing Modules

Modules in Python are files containing reusable code,
such as functions, classes, or variables. Python offers
several modules and packages for different tasks like
data science, machine learning, robotics, etc.

To use a module’'s contents in your code, you need to
import it first. Here are a few different ways to import a
module:

« import <module_name>: This imports the entire
module, and you can access its contents using the
syntax ‘'module_name.content_name.’

For example:

import random

c =random.ranint()

s from <module_name> import <content_name>:

This imports a specific content (function or variable)
from the module, and you can use it directly without
referencing the module name.

from math import sin

c=sin(1.57)

« from <module_name> import *: This imports all
contents of the module. Be careful with this method
as it can lead to conflicts if different modules have
contents with the same name.

Some commonly used built-in Python
modules include:

1. math: Provides mathematical functions
and constants

2. random: Generates random numbers
and provides related functions

3. datetime: Handles date and time
operations

4. os: Interacts with the operating system and
manages files and directories

Creating Packages

Packages in Python are collections of related modules.
They help you organize your code into logical and
functional units. To create a package:

1. Create a new directory with the desired
package name.

2. Add an empty file named init.py to the
directory. This file indicates to Python
that the directory should be treated as a
package.

3. Add your module files (with the .py
extension) to the directory.

Now, you can import the package or its modules into your
Python scripts. To import a module from a package, use
the syntax:

import <package_name.module_name>

Structure your code with modules and packages to make
it more organized and maintainable. This will also make it
easier for you and others to navigate and comprehend
your codebase.

A class is a blueprint for creating objects. It defines the
data (attributes) and functionality (methods) of the
objects. To begin creating your own class, use the
“class” keyword followed by the class name:

class ClassName:

# Class attributes and methods

To add attributes and methods, simply define them
within the class block. For example:

class Dog:
def __init__(self, name, breed):
self.name =name
self.breed = breed
def bark(self):
print("Woof!")

In this example, a new Dog object can be created with a
name and breed, and it has a bark method that prints
"Woof!" when called.

Inheritance allows one class to inherit attributes and
methods from another class, enabling code reusability
and modularity. The class that inherits is called a
subclass or derived class, while the class being
inherited from is called the base class or superclass.

To implement inheritance, add the name of the
superclass in parentheses after the subclass name:

class SubclassName(SuperclassName):

# Subclass attributes and methods

For instance, you could create a subclass "Poodle” from
a 'Dog’ class:

class Poodle(Dog):
def show_trick(self):
print("The poodle does a trick.")

A Poodle object would now have all the attributes
and methods of the Dog class, as well as its own
show_trick method.

Encapsulation

Encapsulation is the practice of wrapping data and
methods that operate on that data within a single unit,
an object in this case. This promotes a clear separation
between an object's internal implementation and its
external interface.

Python employs name mangling to achieve
encapsulation for class members by adding a double
underscore prefix to the attribute name, making it
seemingly private.

class Example:
def __init__(self):
self.__private_attribute ="I'm private!"
def __private_method(self):

print("You can't see me!")

Although you can still technically access these private
members in Python, doing so is strongly discouraged as
it violates encapsulation principles.

By understanding and implementing classes,
inheritance, and encapsulation in your Python
programs, you can utilize the power and flexibility of
Object-Oriented Programming to create clean,
modular, and reusable code.

enterprisedna.co

Helpful Python Libraries

NumpPy is a popular Python library for mathematical
and scientific computing. With its powerful N-
dimensional array object, you can handle a wide range
of mathematical operations, such as:

» Basic mathematical functions

= Linear algebra

= Fourier analysis

» Random number generation
NumPy's efficient array manipulations make it

particularly suitable for projects that require numerical
calculations.

Pandas is a powerful data analysis and manipulation
library that you can use to work with structured data. It's
also very popular in the data science community due to
the wide array of tools it provides for handling data.

Some of its features include:
« Data structures like Series (1D) and DataFrame (2D)
» Data cleaning and preparation
= Statistical analysis
= Time series functionality
By utilizing Pandas, you can easily import, analyze, and
manipulate data in a variety of formats, such as CSV,
Excel, and SQL databases. If you're interested in Pandas,

you can check out our video on How To Resample Time
Series Data Using Pandas To Enhance Analysis:

Youtube Reference

The Requests library simplifies the process of handling
HTTP requests in Python. With this library, you can easily
send and receive HTTP requests, such as GET, POST, and
DELETE. Some key features include:

» Handling redirects and following links on web pages

» Adding headers, form data, and query parameters
via simple Python libraries

s Managing cookies and sessions

Using Requests, you can quickly and efficiently interact
with various web services and APIs.

Beautiful Soup

Beautiful Soup is a Python library for web scraping,
which allows you to extract data from HTML and XML
documents. Some of its key features include:

» Searching for specific tags or CSS classes

» Navigating and modifying parsed trees

» Extracting relevant information based on tag attributes
By using Beautiful Soup in conjunction with Requests,

you can create powerful web scraping applications that
gather information from a wide array of websites.

= Page 2 of 2

Prepared By ENTERPRISE DNA EXPERTS


https://youtu.be/IyHZ3VOd_KE
https://numpy.org/doc/
https://pandas.pydata.org/docs/
https://requests.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
http://enterprisedna.co/
https://enterprisedna.co/experts

