
np.zeros(): Creates an array filled with zeros

ndarray.shape: Returns the dimensions of the array as a

tuple (rows, columns)

np.int32: 32-bit integer

np.int64: 64-bit integer

np.float32: 32-bit floating-point number

np.float64: 64-bit floating-point number

np.complex: Complex number, represented by two 64-bit

floating-point numbers

ndarray.ndim: Returns the number of dimensions in

the array

ndarray.size: Returns the total number of elements in

the array

ndarray.dtype: Returns the data type of the array elements

np.ones(): Creates an array filled with ones

np.identity(): Creates an identity matrix array

np.empty(): Creates an array without initializing its

elements to any particular value

np.arange(): Creates an array with regularly spaced values

between a start and end value

np.�inspa�e(): Creates an array with a specified number of

evenly spaced values between a start and end value

(,m*y +asi�s

85.47
106/2-30662
K5JDC-I6>6E6AD6-=BE-
;::6A2J/9-<5AD2JBA:

Pou can install TumUy from the command line using the

command below:

Creating arrays in TumUy is simple and straightforward.

Pou can create arrays from lists or tuples using the

numpy.array() function:

TumUy arrays have several attributes that provide useful

information about the array. �et�s loo� at some of them:

TumUy provides several data types to store data in arrays,

such as integer, string, float, boolean and complex. ¥y

default, TumUy tries to deduce the data type based on the

input elements.

Êowever, you can also explicitly specify the data type using

the dtype �eyword. µor example:

Pou can also convert arrays from one data type to another.

ãn this example, here�s how we can convert the ãnteger array

a into a ¥oolean array arr using the np.array() method.

Understanding these basic concepts of TumUy will allow you

to effectively wor� with arrays and perform a variety of

mathematical TumUy operations. µor example, you can

chec� out our video on Êow To Transform and Code

Addresses ãn Uython.

ãn it, we used Uython Uandas and TumUy data types to

geocode home addresses.

Common TumUy data types include:

To access these attributes, use the dot notation, li�e so:

(ote: Pou cannot generate an empty array in TumUy. Each

TumUy array has a fixed, immutable size and each

element in the array must be filled in when the array is

created.

The np.empty() function creates the required array shape

and fills it with random values. The default method creates

an array of random floats.

Pou can create a different array datatype using the

dtype parameter.

Pou can also generate arrays of specific shapes and

values using various functions:

Once it�s installed, import it into your code.Once it�s installed, import it into your code.

�eep in mind that you can use any other name apart from

np. Êowever, np is the standard TumUy import convention

used by most developers and data scientists.

&. .nsta��ing %nd .mporting (,m*y

;. 9rray 8reation

K. 9rray 9ttriA,tes

V. Rata Nypes

&. _eshaping

;. 8opying

K. 8on�atenation

/EE-�-A4�/EE/�����-z�-y�-��-��-���

A6~{/EE-�-/EE�E6:0/46�z�-y}

²Creating a shallow copy of a TumUy arra£

²Output:�©�, 6, ©2, ©6, 2��

²Output:�©�, 6, ©2, ©6, 2��

/-�-A4�/EE/���Ê�-��-�z�-���-z»��

µ-�-Æ

µ�»�-�-�É

4EJA2�/}-

4EJA2�µ}-

J.4BE2-A5.4�-/:-Aâ

/EE�-�-A4�/EE/�����-z�-y��

/EEz-�-A4�/EE/�����-��-���

E6:592-�-A4�DBAD/26A/26��/EE��-/EEz}}

²Creating a deep copy of a TumUy arra£

²Output:��, 6, ©2, ©6, 2��

²Output:�©�, 6, ©2, ©6, 2��

/-�-A4�/EE/���Ê�-��-�z�-���-z»��

µ-�-A4�DB4��/�

µ�»�-�-�É

4EJA2�/}-

4EJA2�µ}-

4J4-JA:2/99-A5.4�

J.4BE2-A5.4�-/:-Aâ

/-�-A4�/EE/�����-z�-y�}-

µ-�-A4�/EE/������-z�-y}�-���-��-�}�}-

² Creates a ©d arra£

² Creates a 2d array

/-�-A4�/EE/������-z�-y}�-���-��-�}��

4EJA2�/�:0/46}-

²Urint out the array shap�

² Output: (2, 3)

J.4BE2-A5.4�-/:-Aâ

/-�-A4�/EE/�����-z�-y��-¬2�46�>9B/2�

² Creates an array of floats

J.4BE2-A5.4�-/:-A4

/EE-�-A4�/EE/�����-z�-y�-��-��-���

E6:592-�-A4�:49J2�/EE�-y}

/EE-�-A4�/EE/�����-z�-y��

/EE-�-A4�/446A¬�/EE�-���-��-��}-

/EE-�-A4�¬69626�/EE�-»}-

² Appends values to the

end of the arra£

² Removes the array element on

index �

/EE-�-A4�/EE/�����-z�-y��

696.6A2{z-�-µ��;

/EE�»��-2Ê

²Returns the array element on index N

²Change the array element on index K

/EE�-�-A4�/EE/�����-z�-y�-��-��-��-k��

/EEz-�-A4�/EE/������-z�-y�-��-»}�-���-��-��-���-�y}��

4EJA2�/EE��»dy�}-

µ-�-/EEz���-d-��DB4��}

² To return the first 3 elements of arrN

²Output: �©, 2, 3�

² To return the second row in arr�

²Output: �4, �, 6, ©©, ©3�

ºplitting is the opposite of concatenation. Pou can divide

an array into smaller sub-arrays using the split() function:

Adding or removing elements in a TumUy array can be

achieved using the append() and delete() functions. Pou

can use the former to append values to the end of the array

while the latter deletes the element at a specified index.

Pou can perform indexing operations on TumUy arrays the

same way you�d do them on Uython lists or tuples. �et�s loo�

at how you can access or change array elements in a

given array.

Pou can also slice TumUy arrays to extract or view a

section of the data the same way you�d do Uytho�

. �et�s ta�e a loo� at an example below:lists or sets

(ote: ºlicing creates a shallow copy that still references the

main array. ºo, any change you ma�e to the sliced data

will be applied to the main array and vice versa.

To avoid this, you can use the copy() method to create a

deep, independent copy.

Êere�s an example:

This splits the array into 3 equal-sized sub-arrays. Ensure

that the number of splits you specify can evenly divide

the size of the array along the given axis.

�eep in mind that TumUy arrays have a fixed size. �hen

using append() or delete(), a new array is created, and

the original one is not modified.

Reshaping an array in TumUy is a common tas� you�ll

perform. Pou might need to change the shape of your array

to match the requirements of a function or an algorithm.

Pou can copy the elements in one TumUy array to another

using the copy() method. Pou should note that using the

assignment operator �Â� creates a shallow copy.

Occasionally, you may need to merge two arrays into a

single one. ãn TumUy, you can use the concatenate()

function to ðoin arrays along an existing axis:

The new array only references the old array in the system�s

memory. They contain the same elements and they are not

independent of each other.

This combines arr& and arr; into a single array. �eep in

mind that the arrays being concatenated should have the

same shape, except along the specified axis.

¥y using the deep copy, you create a new TumUy array that

contains the same data as the old one while being

independent of it.

To reshape an array, use the reshape() function:

This will convert your one-dimensional array into p

two-dimensional array with 2 rows and 3 columns.

(ote: �a�e sure the new shape you provide has the same

size (number of array elements) as the original array.

9rray £anip,�ation

6A26E4EJ:6¬A/�DB »E64/E6¬-º�- È¿ÄÇÅÆÅÃÂÇ R(9 È¾ÆÇÅÄÂ

ÑÍÐËÏÎÏÉÊÏÌ

V. Õp�itting

ê. 9ddingå_emoÞing È�ements

÷. .ndeïing

7. Õ�i�ing

Youtube link

https://blog.enterprisedna.co/python-set-vs-list-the-real-difference/
http://enterprisedna.co/
https://enterprisedna.co/experts
https://youtu.be/u_duKigtL5M

Addition: numpy.add(x1, x2)

Sine: numpy.sin(x)

Exponential: numpy.exp(x)

Logarithm(base e): numpy.log(x)

Logarithm(base 10): numpy.log10(x)

Logarithm(base 2): numpy.log2(x)

Cosine: numpy.cos(x)

Tangent: numpy.tan(x)

Arcsine: numpy.arcsin(x)

Arccosine: numpy.arccos(x)

Arctangent: numpy.arctan(x)

Subtraction: numpy.subtract(x1, x2)

Multiplication: numpy.multiply(x1, x2)

Division: numpy.divide(x1, x2)

Modulus: numpy.mod(x1, x2)

Power: numpy.power(x1, x2)

Square root: numpy.sqrt(x)

sum: np.sum(your_array) - Calculate the sum of all the

elements in the array.

std: np.std(your_array) - Calculate the standard

deviation of the values in the array.

argmin: np.argmin(your_array) - Find the index of the

minimum array element.

sort: np.sort(your_array) - Sort the elements in the array

in ascending order.

var: np.var(your_array) - Calculate the variance of the

values in the array.

argmax: np.argmax(your_array) - Find the index of the

maximum array element.

argsort: np.argsort(your_array) - Returns the indices

that would sort the array.

corrcoef: np.corrcoef(your_array) - Calculate the

correlation coefficient of the array.

where: np.where(condition) - Return the indices of

elements in the array that satisfy the given condition.

max: np.max(your_array) - Find the maximum array element.

mean: np.mean(your_array) - Calculate the mean of the

values in the array.

median: np.median(your_array) - Find the median of the

values in the array.

min: np.min(your_array) - Find the minimum array element.

Elementar� �unctions

6he dimensions of the arrays must be compatible (either

the same siAe or one of them is 1).

np[dot(AN O): Computes the dot product of two arrays.

np[linalg[inv(A): Computes the inverse of a square matrix.

np[linalg[eig(A): Computes the eigenvalues and

eigenvectors of a square matrix.

np[linalg[solve(AN O): Solves a linear system of equations,

where ¨ is the coefficient matrix and ¦ is the constant matrix.

¦roadcasting is applied from the trailing dimensions and

worÙs towards the leading dimensions.

òïèîñ
ëêðéìçíêððì
QïickçRðfðrðncðçforç
EssðnìiélçFïncìions

NumPy offers various math operations on arrays that maÙe

them simple and efficient to worÙ with. array mathematics

vector math

6rigonometric functions play a significant role in various

mathematical and scientific computations. NumPy provides a

wide range of trigonometric functions.

Exponents and logarithms are crucial for various numerical

operations. NumPy provides an extensive collection of

functions for dealing with exponents and logarithms.

Some of the operations are:

Some of the essential functions are:

Some of the primary functions are:

6hese functions worÙ seamlessly with arrays, maÙing it easier

for you to perform vectoriAed computations on large datasets.

UtiliAing these functions, you can quicÙly perform complex

mathematical operations on each element in the array. 6his

maÙes your data analysis tasÙs more accessible and efficient.

Note: When using these operations, the two arrays must be

the same shape. If not, you'll run into errors.

6here is an exception for certain arrays thanÙs to a NumPy

feature called broadcasting. We'll cover that in a later section.

You can perform these operations element-wise on the

arrays, which maÙes them highly efficient for large-scale

data manipulation.

NumPy provides several aggregate functions that allow

you to perform operations on arrays, such as summing all

their elements, finding the minimum or maximum value,

and more:

NumPy also has a variety of statistical functions to help you

analyAe data:

Searching in NumPy arrays can be done using

various methods:

You can sort the elements in your array using the

following functions:

With these functions and techniques, you can conveniently

analyAe and manipulate your NumPy arrays to uncover

valuable insights and support your data analysis efforts.

1[Arithmetic Operations

2[Trigonometr�

3[Exponents and Logarithms

1[Aggregate �unctions

2[Statistical �unctions

3[Searching

�[Sorting

1[Oroadcasting

2[Linear Algebra

ièîorìçnïèîPçésçnL

@ç>çnîGérréP?9K:ç;:ç<87

Nç>çnîGérréP?99K:ç;:ç<8:ç96:ç5:ç48:ç93:çH:ç2887

ëç>ç@ç1çN

¦roadcasting is a powerful NumPy feature that allows you

to perform operations on arrays with different shapes and

siAes. It worÙs by automatically expanding the dimensions

of the smaller array to match the larger array, maÙing it

easier to perform element-wise operations.

NumPy provides several linear algebra functions that can

be useful when worÙing with multidimensional arrays. Some

of these functions include:

Remember to always checÙ if your

before performing these operations.

 matrices are compatible

®ere's an example:

Æeep these rules in mind when worÙing with broadcasting:

Advanced �unctions

ðnìðrîrisð×néGco érðîérð×çèPç Eíòõóôóñðõ DNA Eìôõóòð

þûýùüúü÷øüú

Arra� Anal�sis

ièîorìçnïèîPçésçnL

érrç>çnîGérréP?9K:ç;:ç<87

nîGsévð?'èP_érréPGnîP':çérr)

érr_froè_ìxìç>çnîGloé×ìxì?'×éìéGìxì':ç×ðlièiìðr>':')ç

îrinì?érr_froè_ìxì)

érr_ìo_ìxìç>çnîGérréP?99K:ç;:ç<8:ç96:ç5:ç488)ç

nîGsévðìxì?'oïìîïì_×éìéGìxì':çérr_ìo_ìxì:ç×ðlièiìðr>':')

loé×ð×_érréPç>çnîGloé×?'èP_érréPGnîP')ç

îrinì?loé×ð×_érréP7

Output: array([1, 2, 3])

6o save an array, you can use NumPy's np[save()

function. 6his function taÙes the filename and the array as

its two main arguments.

NumPy provides functions to read and write text files with

arrays, such as np[loadtxt() and np[savetxt(). You can

use these functions to save and load data from file

formats liÙe a txt or CSV file.

6o read a text file into an array, use the np[loadtxt()

function. It taÙes the filename as its main argument and

also supports optional arguments for specifying delimiter,

dtype, and more.

6o read the data from a CSV file, you can also use the

np[loadtxt() function. ®owever, maÙe sure the delimiter is

always set to the comma, ",".

6o write an array to a text file, use the np[savetxt()

function. 6his function taÙes the filename and the array as

its two main arguments, followed by optional arguments,

such as delimiter and header.

6hese input and output functions allow you to efficiently

worÙ with arrays and text files in your data processing and

manipulation tasÙs using NumPy.

6o load the saved array, use the np[load() function,

providing the filename as the argument.

You can also save and load multiple arrays using the

np[save() and np[load() functions.

Input and Output

1[Saving and Loading Arra�s

2[Reading and Writing òo Text �iles

https://lexique.netmath.ca/en/compatible-matrices/
http://enterprisedna.co/
https://enterprisedna.co/experts

